Discussion of Cryptography, the Quantum Computing Threat, and What NIST Is Doing for Us
Cryptographers scramble to protect the internet from attackers armed with quantum computers
Excerpts and salient points ~
+ A full-fledged quantum computer is still years, if not decades, away. But developers have long thought that its killer app will be decoding encrypted messages on the internet and elsewhere, be they state secrets or personal information. That prospect has galvanized cryptographers. At a meeting this week in Santa Barbara, California, they will discuss nearly two dozen schemes for encrypting messages in ways that even quantum computers cannot crack.
A quantum computer could hack the public key encryption schemes that now uphold internet security.
+ The workshop is part of a push by the National Institute of Standards and Technology (NIST) to set standards for so-called postquantum cryptography. The multiyear effort may sound premature and a bit paranoid, as such a quantum computer may never exist. But cryptographers say now is the time to prepare, especially because anybody could record sensitive communications now and decipher them later. “If you wait until we have a quantum computer it’s too late,” says Tanja Lange, a cryptographer at Eindhoven University of Technology in the Netherlands. “Every day that we don’t have postquantum cryptography is a day the data is leaked.”
+ To counter the risk, cryptographers are developing less vulnerable trap door algorithms. Many rely on geometric constructions called lattices, arrays of points that resemble the repeating 3D patterns of atoms in a crystal, except they have hundreds or thousands of dimensions. A lattice is defined by a set of arrows or vectors that can be added in different combinations to make the pattern. For the same lattice, the basis can consist of short, nearly perpendicular vectors that are easy to work with, or long, nearly parallel ones that are harder to handle.
Content may have been edited for style and clarity.