Trapping Photons in a Two-Dimensional System May Lead to Quantum Calculations and Quantum Simulations

Trapping Photons in a Two-Dimensional System May Lead to Quantum Calculations and Quantum Simulations

Massive photons in an artificial magnetic field

Excerpts and salient points ~

+  An international research collaboration from Poland, the UK and Russia has created a two-dimensional system—a thin optical cavity filled with liquid crystal—in which they trapped photons. As the properties of the cavity were modified by an external voltage, the photons behaved like massive quasiparticles endowed with a magnetic moment, called “spin,” under the influence of an artificial magnetic field.

The equations describing the motion of photons trapped in the cavity resemble the equations of motion of electrons with spin. Therefore, it was possible to build a photonic system that perfectly imitates electronic properties and leads to many surprising physical effects such as topological states of light.

+  The original idea was to fill the cavity with a liquid crystal material that acts as an optical medium. Under the influence of an external voltage, molecules of this medium can rotate and change the optical path length. Because of this, it was possible to create standing waves of light in the cavity, whose energy (frequency of vibrations) was different when the electric field of the wave (polarization) was directed across the molecules and different for polarization along their axis (this phenomenon is called optical anisotropy).

+  During the research, conducted at the University of Warsaw, the unique behavior of photons trapped in the cavity was found as they behaved like mass-bearing quasiparticles. Such quasiparticles have been observed before, but they were difficult to manipulate because the light does not react to electric or magnetic fields. This time, it was noted that as the optical anisotropy of the liquid crystal material in the cavity was changed, the trapped photons behaved like quasiparticles endowed with a magnetic moment, or a “spin” in an “artificial magnetic field.” Polarization of the electromagnetic wave played the role of “spin” for light in the cavity. The behavior of light in this system is easiest to explain using the analogy of the behavior of electrons in condensed matter.

+  The discovery of new phenomena related to the entrapment of light in optically anisotropic cavities may enable the implementation of new optoelectronic devices, e.g. optical neural networks and perform neuromorphic calculations. There is particular promise to the prospect of creating a unique quantum state of matter—the Bose Einstein condensate. Such a condensate can be used for quantum calculations and simulations, solving problems that are too difficult for modern computers. The studied phenomena will open up new possibilities for technical solutions and further scientific discoveries.

Source:  PHYS.ORG.  University of Warsaw,  Massive photons in an artificial magnetic field…

Content may have been edited for style and clarity.

Share this article ...

Our Mission

At The Qubit Report, our mission is to promote knowledge and opinion of quantum computing from the casual reader to the scientifically astute.  Because Quantum is Coming.

Einstein Stroll