Moore’s Law Getting a Second Wind With Hardware Accelerators + CPUs
Analyst View: The climb to quantum supremacy – SD Times
Excerpts and salient points ~
+ The switch from single to multi-core CPUs has helped keep the curve from going completely flat, but what is creating a second wave of Moore’s Law are hardware accelerators that work with CPUs. In the past these were the preserve of the high-performance computing community, but since artificial intelligence (AI) transferred from research into real-world applications, the need for AI hardware accelerators has led to a huge increase in compute performance. Some of these chips are more versatile than others; for instance you can implement almost any algorithm on an FPGA, but there is a huge demand for repetitive multiply and accumulate (MAC) operations in AI, especially training and inferencing deep neural networks.
The key players today are more concerned with achieving quantum supremacy as there would then be a commercial opportunity with many industries, such as pharmacology, materials science, and more lining up to solve problems that no classical computer could compute in reasonable time. This business opportunity will be operational before the decade is up.
+ Finally, there’s hardware for quantum computing. The first player with a commercial offering is D-Wave Systems, which solves a single function by quantum annealing techniques rather than running an algorithm. In the quest for a universal quantum computer the advances are steady albeit at a basic research level. Cur- rent state of the art requires designers to work with noisy qubits and use techniques like quan- tum error correction to support a single logical qubit with multiple physical qubits to keep the quantum states alive long enough to achieve useful computation.
+ A good benchmark for quantum computing is factoring large numbers. IBM and universities across the globe have been competing to factor the largest number. Shor’s algorithm for factoring sparked a new wave of interest in quantum computer programming, the record using Shor’s algorithm was the number 21 in 2012. The research community subsequently switched to minimization techniques for number factoring, and the record declared in January 2019 is by a team from Shanghai University of the number 1005973 on a D- Wave 2000Q, using 89 qubits. So not quantum supremacy but progress.
Source: SD Times. Michael Azoff, Analyst View: The climb to quantum supremacy – SD Times…
Content may have been edited for style and clarity.