Quantum Information Processing

Controlled for First Time, Quantum Phenomenon Could Suggest Avenues for Technology

University of Chicago scientists have been able to create a new kind of quantum object at will in the laboratory: “domain walls.” The discovery can help researchers better understand exotic quantum particles—and could suggest avenues for new technology in the future, such as quantum electronics or quantum memory… “It’s kind of like a sand dune in the desert—it’s made up of sand, but the dune acts like an object that behaves differently from individual grains of sand,” said Ph.D. student Kai-Xuan Yao, the first author of the study…

Read More »

Quantum Frontiers: Quantum Estuary

A conference talk served as a polished shell, reflecting light almost as a mirror. The talk centered on erasure, a process that unites thermodynamics with information processing: Imagine performing computations in math class. You need blank paper (or the neurological equivalent) on which to scribble. Upon computing a great deal, you have to erase the paper—to reset it to a clean state. Erasing calls for rubbing an eraser across the paper and so for expending energy. This conclusion extends beyond math class and paper: To compute—or otherwise process information—for a long time, we have to erase information-storage systems and so to expend energy. This conclusion renders erasure sacred to us thermodynamicists who study information processing. Erasure litters our papers, conferences, and conversations.

Read More »

No Clunky Magnets or Cryogenics Needed With This Potential Quantum Information Processing Technique

Scientists have generated circularly polarized light and controlled its direction without using clunky magnets or very low temperatures. The findings, by Nagoya University researchers and colleagues in Japan, and published in the journal Advanced Materials, show promise for the development of materials and device methods that can be used in optical quantum information processing.

Read More »