University of Rochester

Research Breakthrough in Entanglement Could Lead to High-Dimensional Encoding of Quantum Information, Future Quantum Devices

Quantum entanglement—or what Albert Einstein once referred to as “spooky action at a distance”— occurs when two quantum particles are connected to each other, even when millions of miles apart. Any observation of one particle affects the other as if they were communicating with each other. When this entanglement involves photons, interesting possibilities emerge, including entangling the photons’ frequencies, the bandwidth of which can be controlled.

Read More »

Doughnut-Shaped Pulses of Light to Transfer Data?

University of Rochester researchers have published a list of ’12 Herculean tasks’ they believe will inspire the next quantum scientists. One of the authors demonstrated the use of ‘twisted light’ to slightly more than double data-throughput per photon. The approach utilized the mechanics of orbital angular momentum (OAM) of photons for encoding the data. Two of the tasks put forth to ponder are, “What is the future of quantum coherence, squeezing, and entanglement for enhanced super resolution and sensing?”, “How can we solve some of humanity’s biggest problems through new quantum technologies?”

Read More »