Trapped Ion Computing is Honeywell’s Gamble

Comprehensive discussion of Honeywell’s trapped ion ambitions from author John Russell at HPC wire.  Recommend reading from the source, below. Because Quantum is Coming. Qubit.

Honeywell’s Big Bet on Trapped Ion Quantum Computing

+  Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would rival any other quantum computer now available.

One of the keys to scaling up, said Uttley, is the ability to easily move the ions around. “Our first architecture is a linear architecture. There is a runway and you have different planes lined up on the runway, and you can take and move them around, such that any one plane on the runway can be next to any other plane on the runway. And we have zones up on the trap itself. So we can do simultaneous gating. We can do simultaneous quantum operations on multiple qubits all at the same time. Being able to do that in real time was a challenge. But because we were able to do that work first, that allows us to now scale much more rapidly,” he said.

+  The forthcoming Honeywell system is expected in mid 2020 and already being trialed by a few beta users including JPMorgan Chase. The new system will boast a Quantum Volume (QV) benchmark of 64 according to Honeywell, the highest QV yet reported. QV, of course, is a blended metric developed by IBM. It’s intended to represent a machine’s overall utility by taking into account things like qubit count, coherence times, qubit connectivity, and error rates. IBM’s top performing system currently has a QV 32 rating. IBM says it plans to double its QV rating yearly. Honeywell, meanwhile, says it will raise its QV 10X every year for the next five years eventually getting to a QV of 640,000.

+  Notably, Honeywell’s new system will have just six qubits. IBM’s ‘biggest’ system has 53 qubits but its top performer, interestingly, is a 28-qubit system (named Raleigh) with a QV 32 rating. QV, contends IBM, is a better yardstick for gauging performance and progress towards achieving quantum advantage – the crossover where QC performance for a particular application is sufficiently better than on a classical HPC system to warrant switching.

Read More…

Source:  HPCwire.  John Russell,  Honeywell’s Big Bet on Trapped Ion Quantum Computing…

Content may have been edited for style and clarity.