Room-temperature superconductivity has been achieved for the first time
+ In a paper published today in Nature, researchers report achieving room-temperature superconductivity in a compound containing hydrogen, sulfur, and carbon at temperatures as high as 58 °F (13.3 °C, or 287.7 K). The previous highest temperature had been 260 K, or 8 °F, achieved by a rival group at George Washington University and the Carnegie Institution in Washington, DC, in 2018. (Another group at the Max Planck Institute for Chemistry in Mainz, Germany, achieved 250 K, or -9.7 °F, at around this same time.) Like the previous records, the new record was attained under extremely high pressures—roughly two and a half million times greater than that of the air we breathe.
“It’s a landmark,” says José Flores-Livas, a computational physicist at the Sapienza University of Rome, who creates models that explain high-temperature superconductivity and was not directly involved in the work. “In a couple of years,” he says, “we went from 200 [K] to 250 and now 290. I’m pretty sure we will reach 300.”
+ In the work reported in today’s paper, researchers from the University of Rochester and colleagues first mixed carbon and sulfur in a one-to-one ratio, milled the mixture down to tiny balls, and then squeezed those balls between two diamonds while injecting hydrogen gas. A laser was shined at the compound for several hours to break down bonds between the sulfur atoms, thus changing the chemistry of the system and the behavior of electrons in the sample. The resulting crystal is not stable at low pressures—but it is superconducting. It is also very small—under the high pressures at which it superconducts, it is about 30 millionths of a meter in diameter.
+ The exact details of why this compound works are not fully understood—the researchers aren’t even sure exactly what compound they made. But they are developing new tools to figure out what it is and are optimistic that once they are able to do so, they will be able to tweak the composition so that the compound might remain superconducting even at lower pressures.
Content may have been edited for style and clarity.