Science & Research

Quantum Frontiers: Quantum Estuary

A conference talk served as a polished shell, reflecting light almost as a mirror. The talk centered on erasure, a process that unites thermodynamics with information processing: Imagine performing computations in math class. You need blank paper (or the neurological equivalent) on which to scribble. Upon computing a great deal, you have to erase the paper—to reset it to a clean state. Erasing calls for rubbing an eraser across the paper and so for expending energy. This conclusion extends beyond math class and paper: To compute—or otherwise process information—for a long time, we have to erase information-storage systems and so to expend energy. This conclusion renders erasure sacred to us thermodynamicists who study information processing. Erasure litters our papers, conferences, and conversations.

Read More »

Creating Dynamic Symmetry in Quantum Systems

Physicists and engineers have long been interested in creating new forms of matter, those not typically found in nature. Such materials might find use someday in, for example, novel computer chips. Beyond applications, they also reveal elusive insights about the fundamental workings of the universe. Recent work at MIT both created and characterized new quantum systems demonstrating dynamical symmetry — particular kinds of behavior that repeat periodically, like a shape folded and reflected through time.

Read More »

Cisco Quantum Research and UC Santa Barbara Collaborate to Push the Limits of Quantum Technology

A new collaboration between UC Santa Barbara researchers and Cisco Systems aims to push the boundaries of quantum technologies. Assistant professors Yufei Ding and Galan Moody have received research awards from the technology giant to work with its new Quantum Research Team, which was formed to pursue the research and development required to turn quantum hardware, software, and applications into broadly used technologies.

Read More »

Research Breakthrough in Entanglement Could Lead to High-Dimensional Encoding of Quantum Information, Future Quantum Devices

Quantum entanglement—or what Albert Einstein once referred to as “spooky action at a distance”— occurs when two quantum particles are connected to each other, even when millions of miles apart. Any observation of one particle affects the other as if they were communicating with each other. When this entanglement involves photons, interesting possibilities emerge, including entangling the photons’ frequencies, the bandwidth of which can be controlled.

Read More »