Superconducting Material May Power Your Quantum Computer

Johns Hopkins Researchers Discover Superconducting Material That Could Someday Power Quantum Computer

In brief…

+  A visual representation of a qubit [Above and center; credit: Yufan Li], which can exist simultaneously between two states. A famous example of a qubit is Schrodinger’s cat, a hypothetical cat that can be both dead and alive. Similarly, a flux qubit, or a ring made of a superconducting material, can have electric current flowing both clockwise and counterclockwise at the same time.

“We’ve found that a certain superconducting material contains special properties that could be the building blocks for technology of the future,” says Yufan Li, a postdoctoral fellow in the Department of Physics & Astronomy at The Johns Hopkins University and the paper’s first author.

+  “A more realistic, tangible implementation of qubit can be a ring made of superconducting material, known as flux qubit, where two states with clockwise- and counterclockwise-flowing electric currents may exist simultaneously,” says Chia-Ling Chien, Professor of Physics at The Johns Hopkins University and another author on the paper. In order to exist between two states, qubits using traditional superconductors require a very precise external magnetic field be applied on each qubit, thus making them difficult to operate in a practical manner.

+  Scientists have yet to discover the intrinsic spin-triplet superconductor needed to advance quantum computing forward, but Li is hopeful that the discovery of β-Bi2Pd’s special properties, will lead to finding Majorana fermions in the material next.

Source:  JOHNS HOPKINS UNIVERSITY.  Chanapa Tantibanchacha,  Johns Hopkins Researchers Discover Superconducting Material That Could Someday Power Quantum Computer…

Content may have been edited for style and clarity.