Using Legos to Model Bigger Quantum Computers; Its About Control

The key to bigger quantum computers could be to build them like Legos

Key points…

The advantages of modular machines.  Most researchers working on superconducting machines focus on creating as many qubits as possible on a single chip. Quantum Circuits’ approach is very different from that standard. The core of its system is a small aluminum module containing superconducting circuits that are made on silicon or sapphire chips. Each module contains what amounts to five to 10 qubits.

Listening to Schoelkopf talk through the technology, an image crept into my head: my kids playing with plastic Lego bricks when they were young, bolting them together to build castles and forts.

+  To network these modules together into larger computers, the company uses what sounds like something out of Star Trek—quantum teleportation. It’s a method that’s been developed for shipping data across things like telecom networks. The basic idea involves entangling a microwave photon in one module with a photon in another one and then using the link between them as a bridge for transferring data. (We’ve got a quantum teleportation explainer too.) Quantum Circuits has used this approach to teleport a quantum version of a logic gate between its modules.

+  Schoelkopf says there are several reasons that networking modules together is better than cramming as many qubits as possible onto a single chip. The smaller scale of each unit makes it easier to control the system and to apply error correction techniques. Moreover, if some qubits go haywire in an individual module, the unit can be removed or isolated without affecting others networked with it; if they’re all on a single chip, the entire thing may have to be scrapped.

Source:  MIT Technology Review.  Martin Giles,  The key to bigger quantum computers could be to build them like Legos…

Content may have been edited for style and clarity.