Moving the Needle On Nanoscale Imaging with Single-Molecule Magnets

Recent advances in scanning probe microscopy (SPM) using single-molecule probe tips as sensors have created the ability to detect and image short-range forces between molecules and electrostatic forces between them, too. However, the use of magnetic molecule scanning probe tips to sense local magnetic fields or spin-spin interactions has been challenging. Gregory Czap and colleagues present a new approach, which uses a single molecule magnet as a scanning magnetometer.
They demonstrate the sensor’s ability to scan the spin and magnetic properties of another molecule adhered to a surface. To achieve this, Czap et al. attached a single molecule of nickelocene (NiCp2) to the probe tip of a scanning tunneling microscope (STM). When the probe tip was moved towards another molecule of nickelocene adhered to the surface of a sheet of gold, the authors were able to detect the magnetic and spin interactions between the two magnetic molecules.
What’s more, the authors were able to use the probe to image the contours of the interactions in multiple spatial directions and to reveal regions where quantum states between the two magnetic molecules were strongly mixed… READ MORE