Graphene Valleytronics: Paving the Way to Small-Sized Room-Temperature Quantum Computers

Valleytronics is an emerging field in which valleys—local minima in the energy band structure of solids—are used to encode, process, and store quantum information. Though graphene was thought to be unsuitable for valleytronics due to its symmetrical structure, researchers from the Indian Institute of Technology Bombay, India, have recently shown that this is not the case. Their findings may pave the way to small-sized quantum computers that can operate at room temperature.

“Magic-angle” Trilayer Graphene May be a Rare, Magnet-Proof Superconductor

MIT physicists have observed signs of a rare type of superconductivity in a material called magic-angle twisted trilayer graphene. In a study appearing in Nature, the researchers report that the material exhibits superconductivity at surprisingly high magnetic fields of up to 10 Tesla, which is three times higher than what the material is predicted to endure if it were a conventional superconductor.

“Magic-angle” Trilayer Graphene May be a Rare, Magnet-Proof Superconductor

MIT physicists have observed signs of a rare type of superconductivity in a material called magic-angle twisted trilayer graphene. In a study appearing in Nature, the researchers report that the material exhibits superconductivity at surprisingly high magnetic fields of up to 10 Tesla, which is three times higher than what the material is predicted to endure if it were a conventional superconductor.

Researchers Develop New Phonon Laser Design: A Graphene Drum

Schematic representation of an experimental setup for receiving and recording phonon radiation.  (Image Credit: Konstantin Arutyunov et al.) Professor Konstantin Arutyunov of the HSE Tikhonov Moscow Institute of Electronics and Mathematics (MIEM HSE), together with Chinese researchers, has developed a graphene-based mechanical resonator, in which coherent emission of sound energy quanta, or phonons, has been […]

Josephson Junctions, Superconducting Switches, Magical Materials all From Graphene

MIT Researchers Stumble Upon A Magic Material For Quantum Computers Read More… +  A group of MIT researchers involving: Pablo Jarillo-Herrero, Cecil and Ida Green, Professor of Physics at MIT, claim to have found a way to build better QCs. The researchers devised three new quantum electronic devices from a ‘magic material’. Quantum computing holds […]

Quantum Hall Edge States Defying the ‘Normal’ Disturbances, U.S NIST Investigates

NIST team probes indestructible quantum states that may aid quantum computing They may not be impervious to bullets like Superman, but groups of electrons that gather along the edges of some ultrathin materials have their own superpowers. Defying such disturbances as bending, stretching, the introduction of an external magnetic field, and distortions that wreck the […]

Thanks Harvard: If True, High Temperature Superconductors, Come on In

Harvard scientists use trilayer graphene to observe more robust superconductivity In 2018, the physics world was set ablaze with the discovery that when an ultrathin layer of carbon, called graphene, is stacked and twisted to a “magic angle,” that new double layered structure converts into a superconductor, allowing electricity to flow without resistance or energy […]

Unexpected: Superconductivity and Magnetism by Twisting Layers of Graphene

A new natural platform for realizing flat-band quantum phenomena and topological states Electrons in solids can have only certain energies, called bands. In recent years, it was shown experimentally that the range of energies allowed for electrons can be tuned by twisting two layers of graphene relative to each other. Under appropriate conditions, the range […]

Advancing Quantum Devices Via Graphene Nanoribbons

Scientists synthesized graphene nanoribbons, shown in yellow, on a titanium dioxide substrate, in blue. The lighter ends of the ribbon show magnetic states. The inset drawing shows how the ends have up and down spin, suitable for creating qubits. Credit: ORNL, U.S. Dept. of Energy On-surface synthesis of graphene nanoribbons could advance quantum devices An […]