Basic 101

Sensing, Repeating Data May Be Up-Ended by Argonne Quantum Research, Q-NEXT

Researchers around the world are exploring how the smallest bits of matter and energy, such as atoms, electrons and photons, can relay information by making essential use of their quantum properties. These unique properties are described by a branch of physics called quantum mechanics, which was originally devised to explain phenomena at the atomic and subatomic scales, but is now central to our understanding of all matter. At the U.S. Department of Energy’s (DOE) Argonne National Laboratory, quantum information science (QIS) is a burgeoning discipline that stands to revolutionize computing, science and communication.

Read More »

Securing Your Information in the Quantum Era

Quantum computing brings many benefits, but can’t be at the expense of data and system security. Internet traffic has seen a staggering, albeit expected increase since the pandemic. Everything from online gaming, shopping, learning, banking, and streaming services, have all experienced an immense boost in consumption, as society has sought to survive and escape reality.

Print

Pro

Read More »

U.S. National Counterintelligence and Security Center Delivers Priorities for Industry Outreach in Emerging Technologies

Quantum Information Science and Technology, which includes quantum computing, networking, sensing, and metrology, leverages the fundamental properties of matter to generate new information technologies. For example, quantum computers can, in principle, use the unique properties of atoms and photons to solve certain types of problems exponentially faster than a conventional computer can. Over many decades, harnessing  quantum aspects of nature has produced critical technologies.

Read More »

The Quantum Revolution – Why You Should Pay Attention Now

If you haven’t heard about quantum computers yet, you may have been spending too much time in the server room, but you will be forgiven if you have missed the numerous recent news articles demonstrating the pace of advancements in quantum computing and just how close we are to them becoming reality. And the answer is ‘sooner than you think’.  The technology giants we are familiar with today such as Amazon, Google, Microsoft, and IBM are investing hugely in this revolutionary technology, alongside an increasing multitude of innovative well-funded start-ups. But why bother?

Read More »

Quantum Information Disappears at the Atomic Scale, Brookhaven and Princeton U Scientists Look to Find Sources of Loss

Engineers and materials scientists studying superconducting quantum information bits (qubits)—a leading quantum computing material platform based on the frictionless flow of paired electrons—have collected clues hinting at the microscopic sources of qubit information loss. This loss is one of the major obstacles in realizing quantum computers capable of stringing together millions of qubits to run demanding computations. Such large-scale, fault-tolerant systems could simulate complicated molecules for drug development, accelerate the discovery of new materials for clean energy, and perform other tasks that would be impossible or take an impractical amount of time (millions of years) for today’s most powerful supercomputers.

Read More »

The Basics on Preparing for a Post-Quantum Computing World

Using quantum computing, attackers can likely break even the most advanced encryption methods. The greatest concerns are Shor’s Algorithm and Grover’s Algorithm, which are two of the most touted capabilities of quantum computing. Once these are easy for attackers to obtain, they will be able to use these algorithms to break existing symmetric, and asymmetric, defenses.

Read More »

Explainer: What is gravity?

We barely think about it, but gravity defines how we interact with our world. We grow up within its constraints, and our muscles, balance system, heart and blood vessels all depend on it. Gravity literally grounds us — but what exactly is it?

Read More »
On Point

Qubit's Picks