Trapped Ion Quantum Computers

More Than Quantum Computing: Applications of Quantum Bits Extend to Search for Dark Matter

Wright Lab assistant professor David Moore, along with three colleagues from other institutions, recently proposed a novel idea of using trapped electrons and ions—technologies that are being developed as qubits for quantum computation—as ultra-sensitive particle detectors that may be able to enhance the search for the nature of dark matter, neutrinos, new forces, and more.Trapped charged particles, such as ions or electrons, are among the most studied systems for developing quantum computers (in parallel with superconducting qubits, which are under development at the Yale Quantum Institute).

Read More »

ColdQuanta’s Newly Formed Quantum Research-as-a-Service Division Embarks on First Project with Oak Ridge National Labs

ColdQuanta, the leader in Cold Atom Quantum Technology, today announced the company has embarked on its first project under the newly branded Quantum Research as a Service (QRaaS) Division to build a Custom Ion Trap System for Oak Ridge National Labs (ORNL). The QRaaS division sits alongside the company’s Quantum Computing and Cold Atom Technology groups, and is dedicated to discovering breakthrough technology in support of government and enterprises. The Oak Ridge system will apply thoughtful engineering to create a high performance and modular system that enables rapid testing of cryogenic electronics, ion trap architectures, and system integration strategies. The cryogenic ion trapping system combines the modular design and systems engineering that ColdQuanta has demonstrated in several of its products to produce a reliable system that is tailored to the customer’s needs for testing and prototyping ion trap hardware.

Read More »
On Point

Qubit's Picks