July 20, 2021

SiC! Uni Sci Tech of China Laying Foundation for Solid-State Quantum Storage and Networking

Prof. LI Chuanfeng, Prof. XU Jinshi and their colleagues from Prof. GUO Guangcan’s group, University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), realized the high-contrast readout and coherent manipulation of a single silicon carbide divacancy color center electron spin at room temperature for the first time in the world, in cooperation with Prof. Adam Gali, from the Wigner Research Centre for Physics in Hungary.

Read More »

U.S. ANL Manipulates Magnonic States; Opportunity for Quantum Computing, Communications, and Sensing

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering have devised a unique means of achieving effective gate operation with a form of information processing called electromagnonics. Their pivotal discovery allows real-time control of information transfer between microwave photons and magnons. And it could result in a new generation of classical electronic and quantum signal devices that can be used in various applications such as signal switching, low-power computing and quantum networking.

Read More »

U.S. ANL Manipulates Magnonic States; Opportunity for Quantum Computing, Communications, and Sensing

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering have devised a unique means of achieving effective gate operation with a form of information processing called electromagnonics. Their pivotal discovery allows real-time control of information transfer between microwave photons and magnons. And it could result in a new generation of classical electronic and quantum signal devices that can be used in various applications such as signal switching, low-power computing and quantum networking.

Read More »
On Point

Qubit's Picks